RESEARCH ARTICLE

OPEN ACCESS

μ - π r α Closed Sets in Bigeneralized Topological Spaces

C. Janaki *and K. Binoy Balan**

* Asst. Professor, Dept. of Mathematics, L.R.G. Govt. Arts College for Women, Tirupur-4, India. **Asst. Professor, Dept. of Mathematics, Ahalia School of Engineering& Technology, Palakkad-678557, India.

Abstract

The aim of the paper is to introduce the concept of $\mu_{(m,n)}$ - $\pi r\alpha$ closed sets in bigeneralized topological spaces and study some of their properties. We also introduce the notion of $\mu_{(m,n)}$ - $\pi r\alpha$ continuous function and $\mu_{(m,n)}$ - $\pi r\alpha T_{1/2}$ spaces on bigeneralized topological spaces and investigate some of their properties.

Mathematics subject classification: 54A05, 54A10

Key words: $\mu_{(m,n)}$ - $\pi r\alpha$ closed sets, $\mu_{(m,n)}$ - $\pi r\alpha$ continuous, μ - $\pi r\alpha$ T_{1/2} spaces.

I. 1.Introduction

Á.Császár [3] introduced the concepts of generalized neighborhood systems and generalized topological spaces. He also introduced the notions of continuous functions and associated interior and closure operators on generalized neighborhood systems and generalized topological spaces. Also in [4] he investigated the notions of μ - α -open sets, μ -semi open sets, μ - pre open sets and μ - β open sets in generalized topological space.

W.Dungthaisong, C.Boonpok and C.Viriyapong [9] introduced the concepts of bigeneralized topological spaces and studied (m, n)- closed sets and (m, n)- open sets in bigeneralized topological spaces. Also several authors were further extended the concept of various types of closed sets [2, 5, 6, 7] in bigeneralized topological spaces.

In this paper, we introduce the notion of $\mu_{(m,n)}$ - $\pi r \alpha$ closed sets, $\mu_{(m,n)}$ - $\pi r \alpha$ continuous functions and $\mu_{(m,n)}$ - $\pi r \alpha$ T_{1/2} spaces in bigeneralized topological spaces and investigate some of their properties.

II. Preliminaries

We recall some basic concepts and results.

Let X be a nonempty set and let exp(X) be the power set of X. $\mu \subseteq exp(X)$ is called a generalized topology [3](briefly, GT) on X, if $\emptyset \in \mu$ and unions of elements of μ belong to μ . The pair (X, μ) is called a generalized topological space (briefly, GTS). The elements of μ are called μ -open subsets of X and the complements are called μ -closed sets. If (X, μ) is a GTS and A \subseteq X, then the interior of (denoted by $i_{\mu}(A)$) is the union of all G \subseteq A, G $\in \mu$ and the closure of A (denoted by $c_{\mu}(A)$) is the intersection of all μ closed sets containing A. Note that $c_{\mu}(A) =$ $X-i_{\mu}(X-S)$ and $i_{\mu}(A) = X - c_{\mu}(X-A)$ [3].

Definition 2.1[4] Let (X, μ_x) be a generalized topological space and $A \subseteq X$. Then A is said to be

(i) μ - semi open if $A \subseteq c_{\mu}(i_{\mu}(A))$.

- (ii) μ pre open if $A \subseteq i_{\mu}(c_{\mu}(A))$.
- (iii) μ - α -open if A $\subseteq i_{\mu}(c_{\mu}(i_{\mu}(A)))$.
- (iv) μ - β -open if $A \subseteq c_{\mu}(i_{\mu}(c_{\mu}(A)))$.
- (v) μ -r-open [8] if A = $i_{\mu}(c_{\mu}(A))$
- (vi) μ -r α -open [1] if there is a μ -r-open set U such that $U \subset A \subset c_{\alpha}(U)$.

Definition 2.2 [1] Let (X, μ_x) be a generalized topological space and $A \subseteq X$. Then A is said to be μ - $\pi r \alpha$ closed set if $c_{\pi}(A) \subseteq U$ whenever $A \subseteq U$ and U is μ - $r \alpha$ -open set. The complement of μ - $\pi r \alpha$ closed set is said to be μ - $\pi r \alpha$ open set.

The complement of μ -semi open (μ -pre open, μ - α -open, μ - β -open, μ -ropen, μ -r α -open) set is called μ - semi closed (μ - pre closed, μ - α - closed, μ - β closed, μ -r- closed, μ -r α -closed) set.

Let us denote the class of all µ-semi open sets, µpre open sets, μ - α -open sets, μ - β -open sets, and μ - π r α open sets on X by $\sigma(\mu_x)$ (σ for short), $\pi(\mu_x)$ (π for short), $\alpha(\mu_x)$ (α for short), $\beta(\mu_x)$ (β for short) and $\pi p(\mu_x)$ (πp for short)respectively. Let μ be a generalized topology on a non empty set X and $S \subseteq X$. The μ - α -closure (resp. μ -semi closure, μ -pre closure, μ - β -closure, μ - π r α -closure) of a subset S of X denoted by $c_{\alpha}(S)$ (resp. $c_{\sigma}(S)$, $c_{\pi}(S)$, $c_{\beta}(S)$, $c_{\pi n}(S)$) is the intersection of μ - α -closed(resp. μ - semi closed, μ - pre closed, μ - β -closed, μ - π r α closed) sets including S. The μ - α -interior (resp. μ -semi interior, μ -pre interior, μ - β -interior, μ - π r α -interior) of a subset S of X denoted by $i_{\alpha}(S)$ (resp. $i_{\sigma}(S)$, $i_{\pi}(S)$, $i_{\beta}(S)$, $i_{\pi p}(S)$) is the union of μ - α -open (resp. μ - semi open, μ- pre open, μ-β-open, μ-πrα open) sets contained in S.

Definition 2.3 [2] Let X be a nonempty set and μ_1 , μ_2 be generalized topologies on X. A triple (X, μ_1 , μ_2) is said to be a bigeneralized topological space.

Remark 2.4 Let (X, μ_1, μ_2) be a bigeneralized topological space and A be a subset of X. The closure of A and the interior of A with respect to μ_m are

denoted by $c\mu_m(A)$ and $i\mu_m(A)$ respectively for m = 1,2. The family of all μ_m - closed set is denoted by the symbol F_n .

Definition 2.5 [2] A subset A of bigeneralized topological space (X, μ_1,μ_2) is called (m, n)- closed if $c\mu_m(c\mu_n(A))=A$, where m, n = 1, 2 and m \neq n. The complements of (m, n) closed sets is called (m, n)-open.

Proposition 2.6 [2] Let (X, μ_1, μ_2) be a bigeneralized topological space and A be a subset of X. Then A is (m, n)- closed if and only if A is both μ - closed in (X, μ_m) and (X, μ_n) .

Definition 2.7 [9] A subset A of a bigeneralized topological space (X, μ_1, μ_2) is said to be (m, n)-generalized closed (briefly $\mu_{(m, n)}$ - closed) set if $c\mu_m(A) \subseteq U$ whenever $A \subseteq U$ and U is μ_m - open set in X, where m, n= 1,2 and m \neq n. The complement of $\mu_{(m,n)}$ - closed set is said to be (m, n)- generalized open (briefly $\mu_{(m,n)}$ -open) set.

Definition 2.8 [9] A bigeneralized topological space (X, μ_1, μ_2) is said to be $\mu_{(m,n)}$ - $T_{1/2}$ -space if every $\mu_{(m,n)}$ - closed set is μ_n -closed, where m, n= 1,2 and m \neq n.

Definition 2.9[9] Let (X, μ_x^1, μ_x^2) and (Y, μ_y^1, μ_y^2) be bigeneralized topological spaces. A function $f:(X, \mu_x^1, \mu_x^2) \rightarrow (Y, \mu_y^1, \mu_y^2)$ is said to be (m, n)generalized continuous(briefly, $g_{(m,n)}$ - continuous) if $f^{-1}(F)$ is $\mu_{(m,n)}$ - closed in X for every μ_n - closed set F of Y, where m, n = 1,2 and m \neq n.

A function f: $(X, \mu_x^1, \mu_x^2) \rightarrow (Y, \mu_y^1, \mu_y^2)$ is said to be pairwise continuous if $f:(X, \mu_x^1) \rightarrow (Y, \mu_y^1)$ and $f:(X, \mu_x^2) \rightarrow (Y, \mu_y^2)$ are continuous.

Definition 2.10 [9] Let (X, μ_x^1, μ_x^2) and (Y, μ_y^1, μ_y^2) be bigeneralized topological spaces. A function f: $(X, \mu_x^1, \mu_x^2) \rightarrow (Y, \mu_y^1, \mu_y^2)$ is said to be $g_{(m,n)}$ - irresolute if f ¹(F) is $\mu_{(m,n)}$ - closed in X for every $\mu_{(m,n)}$ - closed set F in Y, where m, n = 1,2 and m \neq n.

III. $\mu_{(m, n)}$ - \Box $r \Box$ closed sets

In this section, we introduce $\mu_{(m, n)}$ - $\pi r \alpha$ closed sets in bigeneralized topological spaces and study some of their properties.

Definition 3.1 A subset A of a bigeneralized topological space (X, μ_1, μ_2) is said to be $\mu_{(m, n)}$ - $\pi r \alpha$ closed if $c\pi_n$ (A) \subseteq U whenever A \subseteq U and U is μ_m -r α open set in X, where m, n = 1,2 and m \neq n. The complement of a $\mu_{(m, n)}$ - $\pi r \alpha$ closed set is said to be $\mu_{(m, n)}$ - $\pi r \alpha$ open set.

We denote the family of all $\mu_{(m, n)}$ - $\pi r\alpha$ closed (resp. $\mu_{(m, n)}$ - $\pi r\alpha$ open) set in (X, μ_1, μ_2) is $\mu_{(m, n)}$ - $\pi r\alpha C(X)$ (resp. $\mu_{(m, n)}$ - $\pi r\alpha O(X)$), where m, n= 1,2 and m \neq n.

Theorem 3.2 (i) Every (m, n)- closed set is $\mu_{(m, n)}$ - $\pi r\alpha$ closed.

(ii) Every μ_n - closed set is $\mu_{(m, n)}$ - $\pi r \alpha$ closed.

Proof: (i) Let $A \subseteq U$ and U is μ_m -ra open set. Since A is (m, n)- closed set then $c\mu_m(c\mu_n(A)) = A$. Therefore $c\pi_m(c\pi_n(A)) \subseteq c\mu_m(c\mu_n(A)) = A \subseteq U$. Since $c\pi_n(A) \subseteq c\pi_m(c\pi_n(A) \subseteq U$, we get $c\pi_n(A) \subseteq U$. Hence A is $\mu_{(m, n)}$ - π ra closed.

(ii) Let A be a μ_n -closed set and U be a μ_m -r α open set containing A. Then $c\mu_n(A) = A \subseteq U$. Since $c\pi_n(A) \subseteq c\mu_n(A)$, we get $c\pi_n(A) \subseteq U$. Therefore we get A is $\mu_{(m, n)}$ - $\pi r \alpha$ closed.

The converse of the above theorem is not true as seen from the following example.

Example 3.3 Let X= {a, b, c}.Consider the two topologies $\mu_1 = \{\emptyset, \{a\}, \{a, b\}, X\}$ and $\mu_2 = \{\emptyset, \{c\}, \{b, c\}\}$. Then the subset{c} is $\mu_{(1,2)}$ - $\pi r \alpha$ closed but not (1,2)- closed and μ_2 -closed.

Remark 3.4 The concepts $\mu_{(m, n)}$ - closed and $\mu_{(m, n)}$ - $\pi r \alpha$ closed are independent notions. This can be seen from the following examples.

Example 3.5 $\mu_{(1, 2)}$ - $\pi r\alpha$ closed $\Rightarrow \mu_{(1, 2)}$ -closed. Let X = {a, b, c}. Consider the two topologies μ_1 = { \emptyset , {a}, {a, b}, X} and μ_2 = { \emptyset , {c}, {b, c}} on X. Then \emptyset is $\mu_{(1, 2)}$ - $\pi r\alpha$ closed but not $\mu_{(1, 2)}$ - closed.

Example 3.6 $\mu_{(1, 2)}$ - closed $\Rightarrow \mu_{(1, 2)}$ - $\pi r\alpha$ closed. Let X = {a, b, c, d}. Consider the two topologies μ_1 = { \emptyset , {a},{c}, {a, c}, {a, b, c}, X} and μ_2 = { \emptyset , {c}, {b, c}} on X. Then {b, c} and {b, d} are is $\mu_{(1, 2)}$ -closed but not $\mu_{(1, 2)}$ - $\pi r\alpha$ closed.

Remark 3.7 The intersection of two $\mu_{(m, n)}$ - $\pi r\alpha$ closed sets need not be a $\mu_{(m, n)}$ - $\pi r\alpha$ closed set as seen from the following example.

Example 3.8 Let $X = \{a, b, c, d\}$. Consider the two topologies $\mu_1 = \{\emptyset, \{a\}, \{c\}, \{a, c\}, \{a, b, c\}, X\}$ and $\mu_2 = \{\emptyset, \{c\}, \{b, c\}\}$ on X. Then $\{a, c\}$ and $\{c, d\}$ are is $\mu_{(1, 2)}$ - π ra closed but $\{a, c\} \cap \{c, d\} = \{c\}$ is not $\mu_{(1, 2)}$ - π ra closed.

Remark 3.9 The union of two $\mu_{(m, n)}$ - $\pi r\alpha$ closed sets need not be a $\mu_{(m, n)}$ - $\pi r\alpha$ closed set as seen from the following example.

Example 3.10 Let X = {a, b, c}. Consider the two topologies $\mu_1 = \{\emptyset, \{b\}, \{a, c\}, \{b, c\}, X\}$ and $\mu_2 = \{\emptyset, \{b, c\}, \{a, c\}, X\}$ on X. Then {a}and {c}are is $\mu_{(1, 2)}$ -

 $\pi r \alpha$ closed but {a}U{c}= {a, c}is not $\mu_{(1, 2)}\text{-}\pi r \alpha$ closed.

Proposition 3.11 For each element x of a bigeneralized topological space (X, μ_1, μ_2) , $\{x\}$ is μ_m -ra closed or $X - \{x\}$ is $\mu_{(m, n)}$ - π ra closed, where m, n = 1, 2 and m \neq n.

Proof: Let $x \in X$ and the singleton $\{x\}$ be not μ_m -ra closed. Then $X - \{x\}$ is not μ_m -ra open.

If X is $\mu_m\text{-r}\alpha$ open then X is the only $\mu_m\text{-r}\alpha$ open set which contain $X-\{x\}$ and so $X-\{x\}$ is $\mu_{(m, n)}\text{-}\pi\tau\alpha$ closed. And if X is not $\mu_m\text{-r}\alpha$ open then $X-\{x\}$ is $\mu_{(m, n)}\text{-}\pi\tau\alpha$ closed as there is no $\mu_m\text{-r}\alpha$ open set which contains $X-\{x\}$ and hence the condition is satisfied vacuously.

Proposition 3.12 Let (X, μ_1, μ_2) be a bigeneralized topological space. Let $A \subseteq X$ be a $\mu_{(m, n)}$ - $\pi r \alpha$ closed subset of X, then $c\pi_n(A)$ -A does not contain any non empty μ_m -r α closed set, where m, n= 1,2 and m \neq n.

Proof: Let A be a $\mu_{(m, n)}$ - $\pi r\alpha$ closed set and $F \neq \emptyset$ is μ_m -r α closed such that $F \subseteq c\pi_n(A) - A$. Then $F \subseteq X - A$ implies $A \subseteq X - F$. Since A is $\mu_{(m, n)}$ - $\pi r\alpha$ closed, $c\pi_n(A) \subseteq X - F$ and hence $F \subseteq X - c\pi_n(A)$.

That is $F \subseteq c\pi_n(A) \cap (X - c\pi_n(A)) = \emptyset$.

Therefore $c\pi_n(A)$ -A does not contain any nonempty μ_m -ra closed set.

Proposition 3.13 Let μ_1 and μ_2 be generalized topologies on X. If A is $\mu_{(m, n)}$ - $\pi r\alpha$ closed set, then $c\pi_n(\{x\}) \cap A \neq \emptyset$ holds for each $x \in c\pi_n(A)$, where m, n = 1, 2and $m \neq n$.

Proof: Let $x \in c\pi_n(A)$. Suppose that $c\pi_m(\{x\}) \cap A = \emptyset$. Then $A \subseteq X - c\pi_m(\{x\})$.Since A is $\mu_{(m, n)}$ - πra closed and $X - c\pi_m(\{x\})$ is μ_m -ra open. We get $c\pi_n(A) \subseteq X - c\pi_m(\{x\})$. Hence $c\pi_n(A) \cap c\pi_m(\{x\}) = \emptyset$, which is a contradiction to our assumption. Therefore $c\pi_m(\{x\}) \cap A \neq \emptyset$.

Proposition 3.14 If A is $\mu_{(m, n)}$ - $\pi r\alpha$ closed set of (X, μ_{1}, μ_{2}) such that A \subseteq B $\subseteq c\pi_{n}$ (A) then B is $\mu_{(m, n)}$ - $\pi r\alpha$ closed set, where m, n = 1,2 and m \neq n.

Proof: Let A be $\mu_{(m, n)}$ - $\pi r\alpha$ closed set and $A \subseteq B \subseteq c \pi_n(A)$. Let $B \subseteq U$ and U is μ_m -r α open. Then $A \subseteq U$. Since A is $\mu_{(m, n)}$ - $\pi r\alpha$ closed, we have $c \pi_n(A) \subseteq U$.Since $B \subseteq c \pi_n(A)$, then $c \pi_n(B) \subseteq c \pi_n(A) \subseteq U$. Hence B is $\mu_{(m, n)}$ - $\pi r\alpha$ closed.

Remark 3.15 $\mu_{(1, 2)}$ - $\pi r \alpha C(X)$ is generally not equal to $\mu_{(2, 1)}$ - $\pi r \alpha C(X)$, as can be seen from the following example.

Let X = {a, b, c}. Consider the two topologies μ_1 = {Ø, {a}, {a, b}, X} and μ_2 = {Ø, {b}, {a, c}, {b, c}, X} on X. Then $\mu_{(1, 2)}$ - $\pi r \alpha C(X)$ = {Ø,X,{a},{b},{c},{a, b},{b, c},{a, c}}and $\mu_{(2, 1)}$ - $\pi r \alpha C(X)$ = {Ø, X,{b},{c},{a, b}, {b, c}, {b, c}}. Thus $\mu_{(1, 2)}$ - $\pi r \alpha C(X) \neq \mu_{(2, 1)}$ - $\pi r \alpha C(X)$. **Proposition 3.16** Let μ_1 and μ_2 be generalized topologies on X if $\mu_1 \subseteq \mu_2$, then $\mu_{(2, 1)}$ - $\pi r \alpha C(X) \subseteq \mu_{(1, 2)}$ - $\pi r \alpha C(X)$.

Proof: Let A be a $\mu_{(2, 1)}$ - $\pi \alpha$ closed set and U be a μ_1 - $\pi \alpha$ open set containing A. Since $\mu_1 \subseteq \mu_2$, we have $c\pi_2(A) \subseteq c\pi_1(A)$ and μ_1 -C(X) $\subseteq \mu_2$ -C(X). Since A $\in \mu_{(2, 1)}$ - $\pi r\alpha C(X)$, $c\pi_1(A) \subseteq U$. Therefore $c\pi_2(A) \subseteq U$, U is μ_1 -r α open. Thus $A \in \mu_{(1, 2)}$ - $\pi r\alpha C(X)$.

Proposition 3.17 If A be a subset of a bigeneralized topological space (X, μ_1, μ_2) is $\mu_{(m, n)}$ - $\pi r\alpha$ closed then $c\pi_n(A)-A$ is $\mu_{(m, n)}$ - $\pi r\alpha$ open, where m, n=1, 2 and m \neq n.

Proof: Suppose that A is $\mu_{(m, n)}$ - $\pi \alpha$ closed. Let $X-(c\pi_n(A)-A)\subseteq U$ and U is μ_m - $r\alpha$ open. Then $(X-U)\subseteq (c\pi_n(A)-A)$ and X-U is μ_m - $r\alpha$ closed. Thus by Proposition 3.12 $c\pi_n(A)-A$ does not contain non empty μ_m - $r\alpha$ closed.

Consequently $X - U = \emptyset$, then X = U. Therefore $c\pi_n(X - (c\pi_n(A) - A)) \subseteq U$.

So we obtain $X-(c\pi_n(A)-A)$ is $\mu_{(m, n)}-\pi r\alpha$ closed. Hence $c\pi_n(A)-A$ is $\mu_{(m, n)}-\pi r\alpha$ open.

IV. $\mu_{(m, n)}$ - \Box r \Box continuous functions

In this section, we introduce $\mu_{(m, n)}$ - $\pi r \alpha$ continuous functions and $\mu_{(m, n)}$ - $\pi r \alpha$ $T_{1/2}$ in bigeneralized topological spaces and study their properties.

Definition 4.1 Let (X,μ_x^1, μ_x^2) and (Y,μ_y^1, μ_y^2) be bigeneralized topological spaces. A function f: $(X,\mu_x^1,\mu_x^2) \rightarrow (Y,\mu_y^1, \mu_y^2)$ is said to be $\mu_{(m, n)}$ - $\pi r\alpha$ continuous if f¹(F) is $\mu_{(m, n)}$ - $\pi r\alpha$ closed in X for every μ_n -closed set F of Y where m, n= 1,2 and m \neq n.

Definition 4.2 Let $(X_{x}, \mu_{x}^{1}, \mu_{x}^{2})$ and $(Y_{x}, \mu_{y}^{1}, \mu_{y}^{2})$ be bigeneralized topological spaces.

A function f: $(X,\mu_x^1, \mu_x^2) \rightarrow (Y,\mu_y^1, \mu_y^2)$ is said to be $\mu_{(m, n)}$ - $\pi r \alpha$ irresolute if $f^1(F)$ is $\mu_{(m, n)}$ - $\pi r \alpha$ closed in X for every $\mu_{(m, n)}$ - $\pi r \alpha$ closed set F in Y where m, n= 1,2 and m \neq n.

Theorem 4.3 Every pairwise continuous function is $\mu_{(m,n)}$ - $\pi r \alpha$ continuous.

Proof: Let f: $((X,\mu_x^1, \mu_x^2) \rightarrow (Y,\mu_y^1, \mu_y^2)$ be pairwise continuous. Let F be a μ_n -closed set in Y.

Then $f^{1}(F)$ is μ_{n} -closed in X. Since every μ_{n} -closed is $\mu_{(m, n)}$ - $\pi r \alpha$ closed, where m, n = 1, 2 and m \neq n.We have f is $\mu_{(m, n)}$ - $\pi r \alpha$ continuous.

Theorem 4.4 For an injective function f: $(X, \mu_x^1, \mu_x^2) \rightarrow (Y, \mu_y^1, \mu_y^2)$ the following properties are equivalent.

- (i) f is $\mu_{(m, n)}$ - $\pi r\alpha$ continuous.
- (ii) For each $x \in X$ and for every μ_n open set V containing f(x), there exists a $\mu_{(m, n)}$ - $\pi r \alpha$ open set U containing x such that $f(U) \subseteq V$.

- (iii) $f(c\mu_x^n(A)) \subseteq c\mu_x^n(f(A))$ for every subset A of X.
- (iv) $c\mu_x^n (f 1(B)) \subseteq f 1(c\mu_y^n (B))$ for every subset B of Y.

Proof: (i) \Rightarrow (ii) Let $x \in X$ and V be a μ_n -open subset of Y containing f(x). Then by (i), $f^1(V)$ is $\mu_{(m, n)}$ - $\pi r\alpha$ open of X containing x. If $U = f^1(V)$ then $f(U) \subseteq V$. (ii) \Rightarrow (iii) Let A be a subset of X and $f(x) \notin c\mu_y^n$ (f(A)). Then, there exists a μ_n -open subset V of Y containing f(x) such that $V \cap f(A) = \emptyset$. Then by (ii), there exist a $\mu_{(m, n)}$ - $\pi r\alpha$ open set U such that $f(x) \in f(U) \subseteq V$. Hence $f(U) \cap f(A) = \emptyset$ implies $U \cap A = \emptyset$. Consequently, $x \notin c\mu_x^n(A)$ and $f(x) \notin c\mu_x^n(A)$. (iii) \Rightarrow (iv) Let B be a subset of Y.

By (iii) we have $f(c\mu_x^n(f-1(B))) \subseteq c\mu_y^n(f(f-1(B)))$.

Thus
$$(c\mu_x^n(f - 1(B))) \subseteq f - 1(c\mu_y^n(B)).$$

$$(iv) \Rightarrow (i)$$
Let A be a μn

- closed subset of Y, Let U be a $\mu m - ra open subset of X such that f - 1(A)$ $\subseteq U.Since c\mu_y^n(A)$ $= A and by (iv) c\pi_x^n (f - 1)$ $(A)) \subseteq c\mu_x^n (f - 1(A))$ $\subseteq f - 1(c\mu_y^n(A))$ $\subseteq f - 1(A) \subseteq$ Lense f¹(A) is we get a subset of a such we also defined for each we

Hence $f^{1}(A)$ is $\mu_{(m, n)}$ - $\pi r\alpha$ closed for each μ_{n} -closed set A in Y. Therefore f is $\mu_{(m, n)}$ - $\pi r\alpha$ continuous.

Definition 4.5 A bigeneralized topological space (X, μ_x^1, μ_x^2) is said to be $\mu_{(m, n)}$ - $\pi r \alpha T_{1/2}$ space if for every $\mu_{(m, n)}$ - $\pi r \alpha$ closed set is μ_n -closed where m, n = 1, 2 and m \neq n.

Proposition 4.6 Let $f:(X,\mu_x^1, \mu_x^2) \to (Y,\mu_y^1, \mu_y^2)$ and $g:(Y,\mu_y^1, \mu_y^2) \to (Z,\mu_z^1, \mu_z^2)$ be functions, the following properties hold.

- (i) If f is $\mu_{(m, n)}$ - $\pi r \alpha$ irresolute and $\mu_{(m, n)}$ - $\pi r \alpha$ continuous then gof is $\mu_{(m, n)}$ - $\pi r \alpha$ continuous.
- (ii) If f and g are $\mu_{(m, n)}$ - $\pi r\alpha$ irresolute then gof is $\mu_{(m, n)}$ - $\pi r\alpha$ irresolute.
- (iii) Let (Y, μ_y^1, μ_y^2) be a $\mu_{(m, n)}$ - $\pi r \alpha T_{1/2}$ space. If f and g are $\mu_{(m, n)}$ - $\pi r \alpha$ continuous then gof is $\mu_{(m, n)}$ - $\pi r \alpha$ continuous.
- (iv) If f is $\mu_{(m, n)}$ - πra continuous and g is pairwise continuous then gof is $\mu_{(m, n)}$ - πra continuous.

Proof: (i) Let F be a μ_n -closed subset of Z. Since g is $\mu_{(m, n)}$ - $\pi r \alpha$ continuous then $g^{-1}(F)$ is $\mu_{(m, n)}$ - $\pi r \alpha$ closed subset of Y. Since f is $\mu_{(m, n)}$ - $\pi r \alpha$ irresolute, then $(g \circ f)^{-1}(F) = f^{-1}(g^{-1}(F))$ is $\mu_{(m, n)}$ - $\pi r \alpha$ continuous.

(ii) Let F be a $\mu_{(m, n)}$ - $\pi r\alpha$ closed subset of Z. Since g is $\mu_{(m, n)}$ - $\pi r\alpha$ irresolute, then $g^{-1}(F)$ is $\mu_{(m, n)}$ - $\pi r\alpha$ closed subset of Y. Since f is $\mu_{(m, n)}$ - $\pi r\alpha$ irresolute, then $(g \circ f)^{-1}(F) = f^{-1}(g^{-1}(F))$ is $\mu_{(m, n)}$ - $\pi r\alpha$ closed subset of X. Hence $g \circ f$ is $\mu_{(m, n)}$ - $\pi r\alpha$ irresolute.

(iii) Let F be a μ_n -closed subset of Z.

Since g is $\mu_{(m, n)}$ - $\pi r\alpha$ continuous, then g⁻¹(F) is $\mu_{(m, n)}$ - $\pi r\alpha$ closed subset of Y. Since (Y, μ_y^1, μ_y^2) is a $\mu_{(m, n)}$ - $\pi r\alpha$ T_{1/2} space then g⁻¹(F) is μ_n -closed subset of Y. Since f is $\mu_{(m, n)}$ - $\pi r\alpha$ continuous then $(g \circ f)^{-1}(F) = f^{-1}(g^{-1}(F))$ is $\mu_{(m, n)}$ - $\pi r\alpha$ closed subset of X. Hence g of is $\mu_{(m, n)}$ - $\pi r\alpha$ continuous.

(iv) Let f be $\mu_{(m, n)}$ - $\pi r \alpha$ continuous and g be a pairwise continuous. Let F be μ_n -closed in Z. Since g is pairwise continuous, $g^{-1}(F)$ is μ_n -closed. Since f is $\mu_{(m, n)}$ - $\pi r \alpha$ continuous, $f^1(g^{-1}(F))$ is $\mu_{(m, n)}$ - $\pi r \alpha$ closed in X , m, n = 1, 2 and m≠n. Therefore gof is $\mu_{(m, n)}$ - $\pi r \alpha$ continuous.

Theorem 4.7 A bigeneralized topological space is $\mu_{(m, n)}$ - $\pi r \alpha T_{1/2}$ iff {x}is μ_n -open or μ_m -r α closed for each x \in X, where m, n = 1,2 and m \neq n.

Conversely,

Let F be a $\mu_{(m,n)}$ - $\pi r\alpha$ closed set. By assumption {x} is μ_n -open or μ_m - $r\alpha$ closed for any $x \in c\pi_n(F)$.

Case i: Suppose that $\{x\}$ is μ_n -open. Since $\{x\} \cap F \neq \emptyset$, we have $x \in F$.

Case ii: Suppose $\{x\}$ is μ_m -r α closed. If $x \notin F$, then $\{x\} \subseteq c\pi_n(F) - F$.

This is a contradiction to the Proposition 3.12. Therefore $x \in F$. Thus in both cases, we conclude that F is μ_n -closed. Hence (X, μ_x^1, μ_x^2) is a $\mu_{(m, n)}$ - $\pi r \alpha T_{1/2}$ space.

References

- K.Binoy Balan and C.Janaki, μ-πτα closed sets in generalized topological space, Int. Journal of Adv. sci.and Tech. research, 2(6),(2012), 352-359.
- C.Boonpok, Weakly open functions on bigeneralized topological spaces, Int. Journal of Math. Analysis, 15(5),(2010),891-897.
- [3] A.Császár, Generalized topology, generalized continuity, Acta Math.Hungar., 96, (2002), 351-357.
- [4] Á.Császár, Generalized open sets in generalized topologies, Acta Math.Hungar., 106,(2005), 53-66.
- [5] P. Priyadharsini, G. K. Chandrika and A. Parvathi, Semi generalized closed sets in bigeneralized topological spaces, Int. Journal of Math. Archive, 3(1), 2012, 1-7.
- [6] D. Sasikala and L. Arockiarani, $\lambda_{(m, n)}$ -wclosed sets in bigeneralized topological spaces, Int. Journal of Math. Archive,2(9),(2011),1562-1568.
- [7] N. Selvanayaki and Gnanambal Illango, g*closed sets in bigeneralized topological

www.ijera.com

spaces, Int. Journal of Math. Archive, 3(6), (2012), 2297-2302.

- [8] R.Shen, *Remarks on products of generalized topologies*, Acta Math. Hungar., 124 (4) (2009), 363-369.
- [9] Wichai Dungthaisong, Chawaliat Boonpok and Chokchai Viriyapong, *Generalized* closed sets in bigeneralized topological spaces, Int. Journal of Math. Analysis,(5), (2011),1175-1184.